1 in Proc. IEEE Int. Conf. Syst., Man,

 

1       
U. Gargi et al.,
“Large-scale community detection on  YouTube
 for  topic  discovery
 and exploration,” in Proc. Int. Conf. Weblogs
Social Media, 2011, pp. 486–489.

 

2         
M. Cheung, J. She, and
Z. Jie, “Connection discovery using big data of user shared images in social
media,” IEEE Trans. Multimedia, vol. 17, no. 
9 pp. 14171428, Sep. 2015.

We Will Write a Custom Essay Specifically
For You For Only $13.90/page!


order now

 

3        
S. Huang, J. Zhang, L.
Wang, and X.-S. Hua, “Social friend recommen- dation based on multiple network
correlation,” IEEE Trans. Multimedia, vol. 18, no. 2, pp. 287–299, Feb. 2016.

 

4
S. Huang, J. Zhang, L.
Wang, and X.-S. Hua, “Social friend recommen- dation based on multiple network
correlation,” IEEE Trans. Multimedia, vol. 18, no. 2, pp. 287–299, Feb. 2016.

 

5        
S. Fortunato, “Community
detection in graphs,” Phys. Rep., vol. 486, pp. 75–174, 2010.

6        
M. Planti and M.
Crampes, “Survey on social community detection,” in Social Media Retrieval.
London. U.K.: Springer, 2013, pp. 65–85.

7        
F.L.Huang,S.C.Zhang,andX.F.Zhu,”Discoveringn
etworkcommunity based    onmulti-objective
optimization,” Ruan Jian Xue Bao/J. Softw., vol. 24, no. 9, pp.
2062–2077, 2013.

 

8
C. Pizzuti, “GA-NET: A genetic algorithm for
community detec- tion in social networks,” Parallel Problem Solving Nature,
vol. 5199, pp. 1081–1090, 2008.

 

9 X. D. Duan, C. R.
Wang, X. D. Liu, and Y. P. Lin,”Webcommunitydetectionmodelusingparticleswa
rmoptimization,”inProc.Congr.Evol. Comput., 2008, pp. 1074–1079.

 

10J.Xie,S.Kelley,andB.K.Szymanski,”Overlappingc
ommunitydetection in networks: The state-of-the-art and comparative
study,” ACM Comput. Surv., vol. 45, no. 4, 2013, Art. no. 43.

11A.AmelioandC.Pizzuti,”Overlappingcommunityd
iscoverymethods:A survey,” in Social Networks:Analysis and Case Studies.
Vienna, Austria: Springer, 2014, pp. 105–125.

 

12M.LipczakandE.Milios,”Agglomerativegenetical
gorithmforclusteringinsocialnetworks,”inProc.Geneti cEvol.Comput.,2009,pp.1243–1250.

 

13G.Bello,H.Menendez,andD.Camacho,”Usingthec
lusteringcoef?cient to guide a genetic-based communities ?nding algorithm,” in
Proc. Intell. Data Eng. Automated Learn., 2011, pp. 160–169.

 

14         
M. Gong et al., “A
non-dominated neighbor immune algorithm for com- munity detection in networks,”
in Proc. Conf. Genetic Evol.Comput., 2011, pp.
1627–1634.

 

15         
C. Pizzuti, “Boosting
the detection of modular community structure with genetic algorithms and local
search,” in Proc. Symp. Appl. Comput. 2012, pp. 226–231.

 

16        
R. Shang et al.,
“Community detection based on modularityanimprovedgeneticalgorithm,”PhysicaA,Statist.Mech.A
ppl.,vol.392,no.5, pp. 1215–1231, 2013.

 

17         
J. Li and Y. Song,
“Community detection in complex networks us- ing extended
compact geneticalgorithm,”
Soft Comput., vol. 17, no. 6, pp. 925–937, 2013

.

18 A.A.A.Esmin,R.A.Coelho,andS.Matwin,”Arevie
wonparticleswarm optimization algorithm and its variants to clustering
high-dimensional data,” Artif. Intell. Rev., vol. 44, no. 1, pp. 23–45, 2013.

 

19M.BroiloandF.G.B.DeNatale,”Astochasticapproa chtoimageretrieval using
relevance feedback and particle swarm optimization,” IEEE Trans. Multimedia,
vol. 12, no. 4, pp. 267–277, Jun. 2010.

 

20            
H.H.Chou, L.Y.
HsuandH.T.Hu,”Turbulent- PSO-based fuzzy image ?lter with no-reference measures
for high-density impulse noise,” IEEE Trans. Cybern., vol. 43, no. 1, pp.
296–307, Feb. 2013.

 

21         
J. Kennedy and R. C.
Eberhart, “A discrete binary version of the particle swarm algorithm,” in Proc.
IEEE Int. Conf. Syst., Man, Cybern., Oct. 1997, vol. 5, pp. 4104–4108.

 

22        
T. Mei et al.,
“ImageSense: Towards contextual image advertising,” ACM Trans. Multimedia
Comput. Commun. Appl., vol. 8, no. 1, pp. 159–170, 2012.

 

23         
M. Wang et al.,
“Assistive tagging: A survey of multimedia tagging with human-computer joint
exploration,” ACM Comput. Surv., vol. 44, no. 4, 2012, Art. no. 25.

 

24          
A. Sureka et al.,
“Mining YouTube to discover extremist videos, users and hidden communities,” in
Proc. Asia Inf. Retrieval Symp., 2010, pp. 13–24.

 

25         
Z. Wang, D. Zhang, and
X. Zhou, “Discovering and pro?ling overlapping communities in location- based
social networks,” IEEE Trans. Syst. Man, Cybern., Syst., vol. 44, no. 4, pp.
499–509, Apr. 2014.

 

26        
R. L. Santos et al.,
“Characterizing the YouTube video-sharing com- munity,” Federal Univ. Minas
Gerais (UFMG), Belo Horizonte, Brazil, 2007.Online.Available:

http://homepages.dcc.ufmg.br/˜rodrygo/wpcontent/papercite-data/pdf/santos2007vol.466,pp.761764, 2010.

 

27C.M.A.Yeung,N.Gibbins,andN.Shalt”Contextangta
gsincol-  laborative tagging systems,” in Proc. ACM Conf. Hypertext
Hypermedia, 2009, pp. 251–260.

 

28 D. Tsatsou et al., “Distributed technologies for personalized
advertise- ment delivery,” in Online Multimedia Advertising: Techniques and
Tech- nologies, X. C. S. Hua, T. Mei, and A. Hanjalic, Eds. Hershey, PA, USA:
IGI Global, 2010, pp. 233–261.

 

29Y.L.Zhaoetal.,”Detectingpro?lableandoverlappin gcommunitieswith
user-generated multimedia contents in LBSNs,” ACM Trans. Multimedia Comput.
Commun. Appl., vol. 10, no. 1, 2013, Art.

 

30J.Xie,S.Kelley,andB.K.Szymanski,”Overlappingc
ommunitydetection in networks: The state-of-the-art and comparative
study,” ACM Comput. Surv., vol. 45, no. 4, 2013, Art. no. 43.

 

 

 

 

x

Hi!
I'm Johnny!

Would you like to get a custom essay? How about receiving a customized one?

Check it out